Действие силы в природе и технике. Открытый урок по физике. Тема: "Силы в природе"

Все известные взаимодействия и соответственно силы в природе сводятся к следующим четырем типам: гравитационное, электромагнитное, сильное, слабое.

Гравитационное взаимодействие свойственное всем телам во Вселенной, проявляется в виде взаимного притяжения всех тел в природе, независимо от среды в которой они находятся, в микромире элементарных частиц при обычных энергиях роли не играет. Ярким примером является притяжение Землей. Это взаимодействие подчиняется закону всемирного тяготения : сила взаимодействия между двумя материальными точками массами m 1 и m 2 прямо пропорциональная произведению этих масс и обратно пропорциональная квадрату расстояния между ними. Математически этот закон имеет вид:

где G = 6,67 10 -11 Н м 2 /кг 2 - гравитационная постоянная, которая определяет силу притяжения между двумя одинаковыми телами с массами m 1 = m 2 = 1 кг на расстоянии r = 1 м.

Электромагнитное взаимодействие – взаимодействие между неподвижными и подвижными электрическими зарядами. Этим взаимодействием в частности обусловлены силы межмолекулярного и межатомного взаимодействия.

Взаимодействие между двумя точечными неподвижными зарядами q 1 и q 2 подчиняется закону Кулона:

,

где k = 9 10 9 Н м 2 /Кл 2 – коэффициент пропорциональности.

Если заряд движется в магнитном поле, то на него действует сила Лоренца:

v – скорость заряда, В – вектор магнитной индукции.

C ильное взаимодействие обеспечивает связь нуклонов в ядре атома. Слабое отвечает за большинство распадов элементарных частиц, а также за процессы взаимодействия нейтрино с веществом.

В классической механике мы имеем дело с гравитационными и электромагнитными силами, которые приводят к появлению сил притяжения, сил упругости, сил трения и других.

Сила тяжести характеризует взаимодействие тела с Землей.

Вблизи Земли все тела падают приблизительно с одинаковым ускорением g  9,8 м/с 2 , которое называется ускорением свободного падения . Отсюда следует, что вблизи Земли на каждое тело действует сила тяжести, которая направлена к центру Земли и равна произведению массы тела на ускорение свободного падения.

вблизи поверхности Земле поле однородно (g = const ). Сравнивая
с
, получим, что
.

Сила реакции опоры – сила , с которой опора действует на тело. Она приложена к телу и перпендикулярна поверхности соприкосновения. Если тело лежит на горизонтальной поверхности, то сила реакции опоры численно равна силе тяжести. Рассмотрим 2 случая.

1. Рассмотрим рис.

Пусть тело покоится, тогда на него действует две силы. Согласно 2 закону Ньютона

Найдем проекции этих сил на ось у и получим, что

2. Пусть теперь тело находится на наклонной плоскости, составляющей угол с горизонтом (см. рис.).

Рассмотрим случай, когда тело будет покоиться, тогда на тело будут действовать две силы, уравнение движения выглядит аналогично первому случаю. Записав 2 закон Ньютона в проекции на ось у, получим, что сила реакции опоры численно равна проекции силы тяжести на перпендикуляр к этой поверхности

Вес тела – сила, с которой действует тело на опору или подвес. Вес тела равен по модулю силе реакции опоры и направлен противоположно

Часто путают силу тяжести и вес. Это обусловлено тем, что в случае неподвижной опоры эти силы совпадают по величине и по направлению Однако надо помнить, что эти силы приложены к разным телам: сила тяжести приложена к самому телу, вес приложен к подвесу или опоре. Кроме того, сила тяжести всегда равна mg, независимо от того покоится тело или движется, сила веса зависит от ускорения, с которым движутся опора и тело, причем она может быть как больше, так и меньше mg, в частности, в состоянии невесомости она обращается в нуль.

Сила упругости . Под действием внешних сил может происходить изменение формы тела – деформация. Если после прекращения действия силы форма тела возобновляется, деформация называется упругой . Для упругой деформации справедлив закон Гука:

x - удлинение тела вдоль оси х , k - коэффициент пропорциональности, который называют коэффициентом упругости .

При непосредственном соприкосновении тел помимо сил упругости могут возникать силы и другого типа, так называемые силы трения.

Силы трения .

Силы трения бывают двух видов:

    Сила трения покоя.

    Сила трения, обусловленная движением тел.

Сила трения покоя – сила, с которой действует поверхность на покоящееся на ней тело в направлении, противоположном приложенной к телу силе (см. рис) и равная ей по модулю

Силы трения 2 типа появляются при перемещении соприкасающихся тел или частей друг относительно друга. Трение, возникающее при относительном перемещении двух соприкасающихся тел, называют внешним. Трение между частями одного и того же сплошного тела (жидкость или газ), носит название внутреннего.

Сила трения скольжения действует на тело в процессе его перемещения по поверхности другого тела и равна произведению коэффициента трения  между этими телами на силу реакции опоры N и направлена в сторону, противоположную относительной скорости движения этого тела

F = N

Силы трения играют очень большую роль в природе. В нашей повседневной жизни трение нередко оказывается полезным. Например, затруднения которые испытывают пешеходы и транспорт во время гололедицы, когда трение между покрытием дороги и подошвами пешеходов или колесами транспорта значительно уменьшается. Не будь сил трения, мебель пришлось бы прикреплять к полу, как на судне во время качки, ибо она при малейшей негоризонтальности пола сползла бы в направлении покатости.

Закон сохранения импульса

Замкнутой (изолированной) системой тел называют такую систему, тела которой не взаимодействуют с внешними телами или если равнодействующая внешних сил равна нулю.

Если на систему материальных точек не действуют внешние силы, то есть система изолирована (замкнутая ), из (3.12) выплывает, что

,

(3.13)

Мы получили фундаментальный закон классической физики - закон сохранения импульса: в изолированной (замкнутой) системе суммарный импульс остается величиной постоянной. Для того, чтобы выполнялся закон сохранения импульса достаточно, чтобы система была замкнута.

Закон сохранения импульса является фундаментальным законом природы не знающим исключений.

В нерелятивистском случае можно ввести понятие центра масс (центра инерции) системы материальных точек , под которым понимают воображаемую точку, радиус-вектор которой , выражается через радиусы векторы материальных точек по формуле:

(3.14)

Найдем скорость центра масс в данной системе отсчета, взяв производную по времени от соотношения (3.14)

. (3.14)

Импульс системы равняется произведению массы системы на скорость ее центра инерции.


. (3.15)

Понятие центра масс позволяет придать уравнению
другую форму, которая часто оказывается более удобной. Для этого достаточно учесть, что масса системы есть величина постоянная. Тогда

(3.16)

где – сумма всех внешних сил, которые действуют на систему. Уравнение (3.16) – уравнение движенияцентра инерции системы. Теорема о движении центра масс гласит: центр масс движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила – геометрической сумме всех внешних сил, действующих на систему .

Если система замкнута, то
. В этом случае уравнение (3.16) переходит в
, из которого следуетV=const. Центр масс замкнутой системы движется прямолинейно и равномерно.

Целью урока является расширение программного материала по теме: “Силы в природе ” и совершенствование практических навыков и умений по решению задач.

Задачи урока:

  • закрепить изученный материал,
  • сформировать у учащихся представления о силах вообще и о каждой силе в отдельности,
  • грамотно применять формулы и правильно строить чертежи при решении задач.

Урок сопровождается мультимедиа презентацией .

Силой называется векторная величина, которая является причиной всякого движения как следствия взаимодействий тел. Взаимодействия бывают контактные, вызывающие деформации, и бесконтактные. Деформация это изменение формы тела или отдельных его частей в результате взаимодействия.

В Международной системе единиц (СИ) единица силы называется ньютон (Н). 1 Н равен силе, придающей эталонному телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы. Прибор для измерения силы – динамометр.

Действие силы на тело зависит от:

  1. Величины прилагаемой силы;
  2. Точки приложения силы;
  3. Направления действия силы.

По своей природе силы бывают гравитационные, электромагнитные, слабые и сильные взаимодействия на полевом уровне. К гравитационным силам относятся сила тяжести, вес тела, сила тяготения. К электромагнитным силам относятся сила упругости и сила трения. К взаимодействиям на полевом уровне можно отнести такие силы как: сила Кулона, сила Ампера, сила Лоренца.

Рассмотрим предлагаемые силы.

Сила тяготения.

Сила тяготения определяется из закона Всемирного тяготения и возникает на основании гравитационных взаимодействий тел, так как любое тело, обладающее массой, имеет гравитационное поле. Два тела взаимодействуют с силами равными по величине и противоположно направленными, прямо пропорциональными произведению масс и обратно пропорциональными квадрату расстояния между их центрами.

G = 6,67 . 10 -11 - гравитационная постоянная, определенная Кавендишем.

Одним из проявлений силы всемирного тяготения является сила тяжести, причем, ускорение свободного падения можно определить по формуле:

Где: М – масса Земли, R з – радиус Земли.

Задача: Определите силу, с которой притягиваются друг к другу два корабля массой по 10 7 кг каждый, находящиеся на расстоянии 500 м друг от друга.

  1. От чего зависит сила тяготения?
  2. Как запишется формула силы тяготения, действующей на высоте h от поверхности Земли?
  3. Как была измерена гравитационная постоянная?

Сила тяжести.

Сила, с которой Земля притягивает к себе все тела, называется силой тяжести. Обозначается - F тяж, приложена к центру тяжести, направлена по радиусу к центру Земли, определяется по формуле F тяж = mg.

Где: m – масса тела; g – ускорение свободного падения (g=9,8м/с 2).

Задача: сила тяжести на поверхности Земли составляет 10Н. Чему она будет равна на высоте, равной радиусу Земли (6 . 10 6 м)?

  1. В каких единицах измеряется коэффициент g?
  2. Известно, что земля не шар. Она приплюснута у полюсов. Одинакова ли будет сила тяжести одного и того же тела на полюсе и экваторе?
  3. Как определить центр тяжести тела правильной и неправильной геометрической формы?

Вес тела.

Сила, с которой тело действует на горизонтальную опору или вертикальный подвес, вследствие земного притяжения, называется весом. Обозначается - Р, приложена к опоре или подвесу под центром тяжести, направлена вниз.

Если тело покоится, то можно утверждать, что вес равен силе тяжести и определяется по формуле Р = mg.

Если тело движется с ускорением вверх, то тело испытывает перегрузку. Вес определяется по формуле Р = m(g + a).

Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка) .

Если тело движется с ускорением вниз, то тело может испытывать невесомость в первые секунды движения. Вес определяется по формуле Р = m(g - a).

Задача : лифт массой 80 кг движется:

Равномерно;

  • поднимается с ускорением 4,9 м/с 2 вверх;
  • спускается вниз с таким же ускорением.
  • определить вес лифта во всех трех случаях.
  1. Чем вес отличается от силы тяжести?
  2. Как найти точку приложения веса?
  3. Что такое перегрузка и невесомость?

Сила трения.

Сила, возникающая при движении одного тела по поверхности другого, направленная в сторону противоположную движению называется силой трения.

Точка приложения силы трения под центром тяжести, в сторону противоположную движению вдоль соприкасающихся поверхностей. Сила трения делится на силу трения покоя, силу трения качения, силу трения скольжения. Сила трения покоя это сила, препятствующая возникновению движения одного тела по поверхности другого. При ходьбе сила трения покоя, действующая на подошву, сообщает человеку ускорение. При скольжении связи между атомами первоначально неподвижных тел, разрываются, трение уменьшается. Сила трения скольжения зависит от относительной скорости движения соприкасающихся тел. Трение качения во много раз меньше трения скольжения.

Сила трения определяется по формуле:

Где: µ - коэффициент трения безразмерная величина, зависит от характера обработки поверхности и от сочетания материалов соприкасающихся тел (силы притяжения отдельных атомов различных веществ существенно зависят от их электрических свойств);

N – сила реакции опоры - это сила упругости, возникающая в поверхности под действием веса тела.

Для горизонтальной поверхности: F тр = µmg

При движении твердого тела в жидкости или газе возникает сила вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя. Сила вязкого трения сильно зависит от скорости тела.

Задача: Собачья упряжка начинает тащить стоящие на снегу сани массой 100кг с постоянной силой 149Н. За какой промежуток времени сани проедут первые 200м пути, если коэффициент трения скольжения полозьев о снег 0,05?

  1. При каком условии возникает трение?
  2. От чего зависит сила трения скольжения?
  3. Когда трение бывает “полезное”, а когда “вредное”?

Сила упругости.

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Ее называют силой упругости.

Простейшим видом деформации является деформация растяжения или сжатия.

При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: F упр =kх

Это соотношение выражает экспериментально установленный закон Гука: сила упругости прямо пропорциональна изменению длины тела.

Где: k - коэффициент жесткости тела, измеряется в ньютонах на метр (Н/м). Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме:

Где: – относительная деформация; Е – модуль Юнга, который зависит только от свойств материала и не зависит от размеров и формы тела. Для различных материалов модуль Юнга меняется в широких пределах. Для стали, например, E2·10 11 Н/м 2 , а для резины E2·10 6 Н/м 2 ; – механическое напряжение.

При деформации изгиба F упр = - mg и F упр = - Kx.

Следовательно, можно найти коэффициент жесткости:

В технике часто применяются спиралеобразные пружины. При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука, возникают деформации кручения и изгиба.

Задача: Пружину детского пистолета сжали на 3 см. Определите возникшую в ней силу упругости, если жесткость пружины равна 700 Н/м.

  1. От чего зависит жесткость тел?
  2. Объяснить причину возникновения силы упругости?
  3. От чего зависит величина силы упругости?

4. Равнодействующая сила.

Равнодействующей называется сила, заменяющая действия нескольких сил. Эта сила применяется при решении задач с использованием нескольких сил.

На тело действуют сила тяжести и сила реакции опоры. Равнодействующая сила, в данном случае, находится по правилу параллелограмма и определяется по формуле

На основании определения равнодействующей, можно интерпретировать второй закон Ньютона как: равнодействующая сила равна произведению ускорения тела на его массу.

Равнодействующая двух сил, действующих вдоль одной прямой в одну сторону, равна сумме модулей этих сил и направлена в сторону действия этих сил. Если силы действуют вдоль одной прямой, но в разные стороны, то равнодействующая сила равна разности модулей действующих сил и направлена в сторону действия большей силы.

Задача: наклонная плоскость, образующая угол 30 о, имеет длину 25м. тело, двигаясь равноускоренно, соскользнуло с этой плоскости за 2с. Определить коэффициент трения.

Сила Архимеда.

Сила Архимеда - это выталкивающая сила, возникающая в жидкости или газе и действующая противоположно силе тяжести.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу вытесненной жидкости

Где: – плотность жидкости или газа; V – объем погруженной части тела; g – ускорение свободного падения.

Задача: Чугунный шар объемом 1дм 3 опустили в жидкость. Его вес уменьшился на 8,9Н. В какой жидкости находится шар?

  1. Каковы условия плавания тел?
  2. Зависит ли сила Архимеда от плотности тела, погруженного в жидкость?
  3. Как направлена сила Архимеда?

Центробежная сила.

Центробежная сила возникает при движении по окружности и направлена по радиусу из центра.

Где: v –линейная скорость; r – радиус окружности.

Сила Кулона.

В механике Ньютона используется понятие гравитационной массы, подобно этому в электродинамике первичным является понятие электрического заряда.Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Заряды взаимодействуют с силой Кулона.

Где: q 1 и q 2 – взаимодействующие заряды, измеряющиеся в Кл (Кулонах);

r – расстояние между зарядами; k – коэффициент пропорциональности.

k=9 . 10 9 (Н . м 2)/Кл 2

Часто его записывают в виде: ,где – электрическая постоянная, равная 8,85 . 10 12 Кл 2 /(Н . м 2).

Силы взаимодействия подчиняются третьему закону Ньютона: F 1 = - F 2 . Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Задача: Сила взаимодействия двух одинаковых точечных зарядов, находящихся на расстоянии 0,5м, равна 3,6Н. Найти значения этих зарядов?

  1. Почему при электризации трением заряжаются оба трущихся тела?
  2. Остается ли неизменной масса тела при его электризации?
  3. В чем заключается физический смысл коэффициента пропорциональности в законе Кулона?

Сила Ампера.

На проводник с током в магнитном поле действует сила Ампера.

Где: I – сила тока в проводнике; В – магнитная индукция; l - длина проводника; – угол между направлением проводника и направлением вектора магнитной индукции.

Направление этой силы можно определить по правилу левой руки.

Если левую руку следует расположить таким образом, чтобы линии магнитной индукции входили в ладонь, вытянутые четыре пальца направлены вдоль действия силы тока, то отогнутый большой палец указывает направление силы Ампера.

Задача: определить направление тока в проводнике, находящемся в магнитном поле, если действующая на проводник сила имеет направление

  1. При каких условиях возникает сила Ампера?
  2. Как определить направление действия силы Ампера?
  3. Как определить направление линий магнитной индукции?

Сила Лоренца.

Сила, с которой электромагнитное поле действует на любое, находящееся в нем заряженное тело, называется силой Лоренца.

Где: q – величина заряда; v – скорость движения заряженной частицы; В – магнитная индукция; – угол между векторами скорости и магнитной индукции.

Направление силы Лоренца можно определить по правилу левой руки.

Задача: в однородном магнитном поле, индукция которого равна 2Тл, движется электрон со скоростью 10 5 м/с перпендикулярно линиям магнитной индукции. Вычислить силу, действующую на электрон.

  1. Что называется силой Лоренца?
  2. Каковы условия существования силы Лоренца?
  3. Как определить направление действия силы Лоренца?

В заключение урока предоставляется возможность учащимся заполнить таблицу.

Название силы Формула Рисунок Точка приложения Направление действия
Сила тяготения
Сила тяжести
Вес
Сила трения
Сила упругости
Сила Архимеда
Равнодействующая сила
Центробежная сила
Сила Кулона
Сила Ампера
Сила Лоренца

Литература:

  1. М.Ю.Демидова, И.И.Нурминский “ЕГЭ 2009”
  2. И.В.Кривченко “Физика – 7”
  3. В.А.Касьянов “Физика. Профильный уровень”

Сила - мера механического взаимодействия тел. Сила является причиной изменения скорости тела или возникновения в нём деформаций (изменение формы или объема). Сила − векторная величина, характеризующаяся модулем (величиной), направлением и точкой приложения силы. Линия действия силы - прямая, проходящая через точку приложения силы, и продолжающая направление вектора силы. Единицей измерения силы в системе СИ является Ньютон [Н]. Все силы в природе основаны на четырех типах фундаментальных взаимодействий:

  • электромагнитные силы, действующие между электрически заряженными телами,
  • гравитационные силы, действующие между массивными объектами,
  • сильное ядерное взаимодействие, действующее в масштабах порядка размера атомного ядра и меньше (отвечает за связь между кварками в адронах и за притяжение между нуклонами в ядрах).
  • слабое ядерное взаимодействие, проявляющееся на расстояниях, значительно меньших размера атомного ядра.

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» условно. Действие силы может место как при непосредственном контакте (трение, давление те друг на друга при непосредственном контакте), так и посредством создаваемых телами полей (поле тяготения, электромагнитное поле). Интересный и познавательный сайт http://mistermigell.ru для вас.
С точки зрения действия сил на систему, рассматривают:

  • внутренние силы - силы взаимодействия между точками (телами) данной системы;
  • внешние силы - силы, действующие на точки (тела) данной системы со стороны точек (тел), не принадлежащих данной системе. Внешние силы называют нагрузками.

Силы можно разделить на:

  • реактивные силы − реакции связи. Если движение тела в пространстве ограничивается другими тела (связями, опорами), силы, с которыми эти тела действуют на данное тело, называют реакциями связи (опоры).
  • активные силы - силы, характеризующие действие других тел на данное и изменяющее его кинематическое состояние. Активны силы, в зависимости от вида контакта, подразделяются на
  • объемные - силы, действующие на каждую частицу тела, например, вес тела;
  • поверхностные - силы, действующие на участок тела и характеризующие непосредственный контакт тел. Поверхностные силы бывают:
  • сосредоточенными - действующими на площадках, которые малы по сравнению с телом, например, давление колеса на дорогу;
  • распределенными - действующими на площадках, которые не малы по сравнению с телом, например, давление гусеницы трактора на дорогу.

Наиболее известные силы:
Силы упругости − силы, возникающие при деформации тела и противодействующие этой деформации, имеет электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы упругости направлен противоположно перемещению, перпендикулярно поверхности. Например, если сжать резинку, после снятия нагрузки она восстановит свою форму под действием силы упругости.
Силы трения − сила, возникающие при относительном движении твёрдых тел и противодействующие этому движению, имеют электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости. Например, сила трения возникает при скольжении санок по снегу, между подошвой ног и землей.
Силы сопротивления среды — силы, возникающие при движении твёрдого тела в жидкой или газообразной среде, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости. Например, при движении самолета в воздухе.
Силы поверхностного натяжения − силы, возникающие на поверхности фазового раздела, имеют электромагнитную природу, являясь проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз. Например, монетка может лежать на поверхности жидкости, насекомые бегают по воде.
Сила всемирного тяготения − сила, с которой любые тела Вселенной притягивают друг друга, она прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними. Например, Земля притягивается к Солнцу, и, в то же время, Земля притягивает Луну и Солнце.
Сила тяжести − сила, действующая на тело со стороны Земли, которая сообщает ему ускорение свободного падения. Сила тяжести - это сумма сил гравитационного притяжения и центробежной силы вращения Земли. Например, под действием силы тяжести тела падают Земли.
Сила инерции − фиктивная сила (не является мерой механического взаимодействия), вводимая при рассмотрении относительного движения в неинерциальных системах отсчёта (движущихся с ускорением) для того, чтобы в них выполнялся второй закон Ньютона. В системе отсчёта, связанной с равноускоренно движущимся телом, сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила, направленная от оси вращение тела, и сила Кориолиса, возникающая при движении тела относительно вращающейся системы отсчета.
Существуют и другие силы.

Денис, 6 класс, ХФМЛ % 27

Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое.

Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с 2 .

Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях.

Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:

Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 10 -11 Н м 2 /кг 2 .

Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения.

При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости.

Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле.

Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g.

Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения.

Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя.

Причиной изменения движения: появления ускорения у тел является сила. Силы возникают при взаимодействии тел друг с другом. Но какие существуют виды взаимодействий и много ли их?

На первый взгляд может показаться, что различных видов воздействий тел друг на друга, а следовательно, и различных видов сил существует очень много. Ускорение можно сообщить телу, толкнув или потянув его рукой; с ускорением плывёт корабль, когда дует попутный ветер; с ускорением движется любое тело, падающее на Землю; натянув и отпустив тетиву лука, мы сообщаем ускорение стреле. Во всех рассмотренных случаях действуют силы, и все они кажутся совершенно различными. А можно назвать ещё и другие силы. Все знают о существовании электрических и магнитных сил, о силе прилива и отлива, о силе землетрясений и ураганов.

Но действительно ли в природе существует так много разных сил?

Если мы говорим о механическом движении тел, то здесь мы встречаемся только с тремя видами сил: сила тяготения, сила упругости и сила трения. К ним сводятся, все рассмотренные выше силы. Силы упругости, тяготения и трения являются проявлением сил всемирного тяготения и электромагнитных сил природы. Получается, что в природе из указанных существует только две силы.

Электромагнитные силы. Между наэлектризованными телами действует особая сила, которая называется электрической силой, которая может быть как силой притяжения, так и силой отталкивания. В природе существуют заряды двух видов: положительные и отрицательные. Два тела с различными зарядами притягиваются, а тела с одноимёнными зарядами отталкиваются.

Электрические заряды обладают одним особенным свойством: когда заряды движутся, между ними, кроме электрической силы, возникает и другая – магнитная сила.

Магнитная и электрическая силы тесно связаны друг с другом и действуют одновременно. А так как чаще всего приходится иметь дело с движущимися зарядами, то действующие между ними силы нельзя разграничить. И эти силы называют электромагнитными силами.

Как же возникает «электрический заряд», который может быть у тела, а может и не быть?

Все тела состоят из молекул и атомов. Атомы состоят ещё из более мелких частиц – атомного ядра и электронов. Они, ядра и электроны, обладают определёнными электрическими зарядами. Ядро имеет положительный заряд, а электроны – отрицательный.

В нормальных условиях атом не имеет заряда – он нейтрален, потому что суммарный отрицательный заряд электронов равен положительному заряду ядра. И тела, которые состоят их таких нейтральных атомов, электрически нейтральны. Между такими телами практически нет электрических сил взаимодействия.

Но в одном и том же жидком (или твёрдом) теле соседние атомы настолько близко расположены один к другому, что силы взаимодействия между зарядами, из которых они состоят, весьма значительны.

Силы взаимодействия атомов зависят от расстояний между ними. Силы взаимодействия между атомами способны изменять своё направление при изменении расстояния между ними. Если расстояние между атомами очень мало, то они отталкиваются друг от друга. Но если расстояние между ними увеличить, то атомы начинают притягиваться. При некотором расстоянии между атомами силы их взаимодействия становятся равными нули. Естественно, что на таких расстояниях атомы и располагаются друг относительно друга. Отметим, что расстояния эти очень малы, и приблизительно равны размерам самих атомов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.