Что называется площадью боковой поверхности. Прямая призма — Гипермаркет знаний

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

Разные призмы непохожи друг на друга. В то же время у них много общего. Чтобы найти площадь основания призмы, потребуется разобраться в том, какой вид оно имеет.

Общая теория

Призмой является любой многогранник, боковые стороны которого имеют вид параллелограмма. При этом в ее основании может оказаться любой многогранник - от треугольника до n-угольника. Причем основания призмы всегда равны друг другу. Что не относится к боковым граням — они могут существенно различаться по размерам.

При решении задач встречается не только площадь основания призмы. Может потребоваться знание боковой поверхности, то есть всех граней, которые не являются основаниями. Полной поверхностью уже будет объединение всех граней, которые составляют призму.

Иногда в задачах фигурирует высота. Она является перпендикуляром к основаниям. Диагональю многогранника является отрезок, который соединяет попарно две любые вершины, не принадлежащие одной грани.

Следует отметить, что площадь основания прямой призмы или наклонной не зависит от угла между ними и боковыми гранями. Если у них одинаковые фигуры в верхней и нижней гранях, то их площади будут равными.

Треугольная призма

Она имеет в основании фигуру, имеющую три вершины, то есть треугольник. Он, как известно, бывает разным. Если то достаточно вспомнить, что его площадь определяется половиной произведения катетов.

Математическая запись выглядит так: S = ½ ав.

Чтобы узнать площадь основания в общем виде, пригодятся формулы: Герона и та, в которой берется половина стороны на высоту, проведенную к ней.

Первая формула должна быть записана так: S = √(р (р-а) (р-в) (р-с)). В этой записи присутствует полупериметр (р), то есть сумма трех сторон, разделенная на два.

Вторая: S = ½ н а * а.

Если требуется узнать площадь основания треугольной призмы, которая является правильной, то треугольник оказывается равносторонним. Для него существует своя формула: S = ¼ а 2 * √3.

Четырехугольная призма

Ее основанием является любой из известных четырехугольников. Это может быть прямоугольник или квадрат, параллелепипед или ромб. В каждом случае для того, чтобы вычислить площадь основания призмы, будет нужна своя формула.

Если основание — прямоугольник, то его площадь определяется так: S = ав, где а, в — стороны прямоугольника.

Когда речь идет о четырехугольной призме, то площадь основания правильной призмы вычисляется по формуле для квадрата. Потому что именно он оказывается лежащим в основании. S = а 2 .

В случае когда основание — это параллелепипед, будет нужно такое равенство: S = а * н а. Бывает такое, что даны сторона параллелепипеда и один из углов. Тогда для вычисления высоты потребуется воспользоваться дополнительной формулой: н а = в * sin А. Причем угол А прилегает к стороне «в», а высота н а противолежащая к этому углу.

Если в основании призмы лежит ромб, то для определения его площади будет нужна та же формула, что для параллелограмма (так как он является его частным случаем). Но можно воспользоваться и такой: S = ½ d 1 d 2 . Здесь d 1 и d 2 - две диагонали ромба.

Правильная пятиугольная призма

Этот случай предполагает разбиение многоугольника на треугольники, площади которых узнать проще. Хотя бывает, что фигуры могут быть с другим количеством вершин.

Поскольку основание призмы — правильный пятиугольник, то он может быть разделен на пять равносторонних треугольников. Тогда площадь основания призмы равна площади одного такого треугольника (формулу можно посмотреть выше), умноженной на пять.

Правильная шестиугольная призма

По принципу, описанному для пятиугольной призмы, удается разбить шестиугольник основания на 6 равносторонних треугольников. Формула площади основания такой призмы подобна предыдущей. Только в ней следует умножать на шесть.

Выглядеть формула будет таким образом: S = 3/2 а 2 * √3.

Задачи

№ 1. Дана правильная прямая Ее диагональ равна 22 см, высота многогранника — 14 см. Вычислить площадь основания призмы и всей поверхности.

Решение. Основанием призмы является квадрат, но его сторона не известна. Найти ее значение можно из диагонали квадрата (х), которая связана с диагональю призмы (d) и ее высотой (н). х 2 = d 2 - н 2 . С другой стороны, этот отрезок «х» является гипотенузой в треугольнике, катеты которого равны стороне квадрата. То есть х 2 = а 2 + а 2 . Таким образом получается, что а 2 = (d 2 - н 2)/2.

Подставить вместо d число 22, а «н» заменить его значением — 14, то получается, что сторона квадрата равна 12 см. Теперь просто узнать площадь основания: 12 * 12 = 144 см 2 .

Чтобы узнать площадь всей поверхности, нужно сложить удвоенное значение площади основания и учетверенную боковую. Последнюю легко найти по формуле для прямоугольника: перемножить высоту многогранника и сторону основания. То есть 14 и 12, это число будет равно 168 см 2 . Общая площадь поверхности призмы оказывается 960 см 2 .

Ответ. Площадь основания призмы равна 144 см 2 . Всей поверхности - 960 см 2 .

№ 2. Дана В основании лежит треугольник со стороной 6 см. При этом диагональ боковой грани составляет 10 см. Вычислить площади: основания и боковой поверхности.

Решение. Так как призма правильная, то ее основанием является равносторонний треугольник. Поэтому его площадь оказывается равна 6 в квадрате, умноженному на ¼ и на корень квадратный из 3. Простое вычисление приводит к результату: 9√3 см 2 . Это площадь одного основания призмы.

Все боковые грани одинаковые и представляют собой прямоугольники со сторонами 6 и 10 см. Чтобы вычислить их площади, достаточно перемножить эти числа. Потом умножить их на три, потому что боковых граней у призмы именно столько. Тогда площадь боковой поверхности оказывается раной 180 см 2 .

Ответ. Площади: основания - 9√3 см 2 , боковой поверхности призмы - 180 см 2 .

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

Геометрия пространств размерности, большей трех; термин применяется к тем пространствам, геометрия к рых была первоначально развита для случая трех измерений и только потом обобщена на число измерений n>3, прежде всего евклидово пространство,… … Математическая энциклопедия

N мерная евклидова геометрия обобщение евклидовой геометрии на пространство большего числа измерений. Хотя физическое пространство является трёхмерным, и человеческие органы чувств рассчитаны на восприятие трёх измерений, N мерная… … Википедия

У этого термина существуют и другие значения, см. Пирамидацу (значения). Достоверность этого раздела статьи поставлена под сомнение. Необходимо проверить точность фактов, изложенных в этом разделе. На странице обcуждения могут быть пояснения … Википедия

- (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она позволяет создать сложную сцену или … Википедия

Конструктивная блочная геометрия (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она… … Википедия

У этого термина существуют и другие значения, см. Объём (значения). Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого… … Википедия

Куб Тип Правильный многогранник Грань квадрат Вершин Рёбер Граней … Википедия

Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении трёхмерных тел трёхмерного евклидова пространства.… … Википедия

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

Книги

  • Комплект таблиц. Геометрия. 10 класс. 14 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 14 листов.…

Лекция: Призма, её основания, боковые рёбра, высота, боковая поверхность; прямая призма; правильная призма


Призма


Если Вы вместе с нами выучили плоские фигуры из прошлых вопросов, значит, полностью готовы к изучению объемных фигур. Первое объемное тело, которое мы выучим, будет призма.


Призма – это объемное тело, которое имеет большое количество граней.

Данная фигура имеет в основаниях два многоугольника, которые расположены в параллельных плоскостях, а все боковые грани имеют форму параллелограмма.


Рис 1. Рис. 2


Итак, давайте разберемся, из чего состоит призма. Для этого обратите внимание на Рис.1

Как уже говорилось ранее, у призмы есть два основания, которые параллельны друг другу – это пятиугольники ABCEF и GMNJK. Более того, данные многоугольники равны между собой.

Все остальные грани призмы называются боковыми гранями – они состоят из параллелограммов. Например, BMNC, AGKF, FKJE и т.д.

Общая поверхность всех боковых граней называется боковой поверхностью .

Каждая пара соседних граней имеет общую сторону. Такая общая сторона называется ребром. Например МВ, СЕ, АВ и т.д.

Если верхнее и нижнее основание призмы соединить перпендикуляром, то он будет называться высотой призмы. На рисунке высота отмечена, как прямая ОО 1 .

Существует две основных разновидности призмы: наклонная и прямая.

Если боковые ребра призмы не являются перпендикулярными к основаниям, то такая призма называется наклонной .

Если все ребра призмы перпендикулярны к основаниям, то такая призма называется прямой .

Если в основаниях призмы лежат правильные многоугольники (те, у которых стороны равны), то такая призма называется правильной .

Если основания у призмы не параллельны друг другу, то такая призма будет называться усеченной.

Её Вы можете наблюдать на Рис.2



Формулы для нахождения объема, площади призмы


Существует три основных формулы нахождения объема. Отличаются они друг от друга применением:




Аналогичные формулы для нахождения площади поверхности призмы: